Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism
نویسندگان
چکیده
منابع مشابه
Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process
Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational...
متن کاملStructure and dynamics of model pore insertion into a membrane.
A cylindrical transmembrane molecule is constructed by linking hydrophobic sites selected from a coarse grain model. The resulting hollow tube assembly serves as a representation of a transmembrane channel, pore, or a carbon nanotube. The interactions of a coarse grain di-myristoyl-phosphatidyl-choline hydrated bilayer with both a purely hydrophobic tube and a tube with hydrophilic caps are stu...
متن کاملMolecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly
Autophagy is a catabolic pathway that sequesters undesired cellular material into autophagosomes for delivery to lysosomes for degradation. A key step in the pathway is the covalent conjugation of the ubiquitin-related protein Atg8 to phosphatidylethanolamine (Atg8-PE) in autophagic membranes by a complex consisting of Atg16 and the Atg12-Atg5 conjugate. Atg8 controls the expansion of autophagi...
متن کاملThe Aerolysin-Like Toxin Family of Cytolytic, Pore-Forming Toxins
Pore-forming toxins (PFTs) represent the largest known group of bacterial protein toxins to date. Membrane insertion and subsequent pore-formation occurs after initial binding to cell-surface receptor and oligomerization. Aerolysin, a toxin produced by the Gram-negative bacterium Aeromonas hydrophila and related species, belongs to the PFT group and shares a common mechanism of action involving...
متن کاملNeuronal fusion pore assembly requires membrane cholesterol.
Cholesterol has been proposed to play a critical role in regulating neurotransmitter release and synaptic plasticity. The neuronal porosome/fusion pore, the secretory machinery at the nerve terminal, is a 12-17 nm cup-shaped lipoprotein structure composed of cholesterol and a number of proteins, among them calcium channels, and the t-SNARE proteins Syntaxin-1 and SNAP-25. During neurotransmissi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemical Biology
سال: 2013
ISSN: 1552-4450,1552-4469
DOI: 10.1038/nchembio.1312